A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations

نویسندگان

  • Guojie Wang
  • Damien Garcia
  • Yi Liu
  • Richard de Jeu
  • A. Johannes Dolman
چکیده

The presence of data gaps is always a concern in geophysical records, creating not only difficulty in interpretation but, more importantly, also a large source of uncertainty in data analysis. Filling the data gaps is a necessity for use in statistical modeling. There are numerous approaches for this purpose. However, particularly challenging are the increasing number of very large spatio-temporal datasets such as those from Earth observations satellites. Here we introduce an efficient three-dimensional method based on discrete cosine transforms, which explicitly utilizes information from both time and space to predict the missing values. To analyze its performance, the method was applied to a global soil moisture product derived from satellite images. We also executed a validation by introducing synthetic gaps. It is shown this method is capable of filling data gaps in the global soil moisture dataset with very high accuracy. 2011 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Soil Moisture from Satellite Observations, Land Surface Models, and Ground Data: Implications for Data Assimilation

Three independent surface soil moisture datasets for the period 1979–87 are compared: 1) global retrievals from the Scanning Multichannel Microwave Radiometer (SMMR), 2) global soil moisture derived from observed meteorological forcing using the NASA Catchment Land Surface Model, and 3) ground-based measurements in Eurasia and North America from the Global Soil Moisture Data Bank. Time-average ...

متن کامل

Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: Relationship of satellite observations to in situ soil moisture measurements

[1] This study presents a systematic and integrated analysis of the sensitivity of the available satellite observations to in situ soil moisture measurements. Although none of these satellites is optimized for land surface characterization, before the launches of the SMOSand HYDROS-dedicated missions they are the only potential sources of global soil moisture measurements. The satellite observa...

متن کامل

Error characterisation of global active and passive microwave soil moisture datasets

Understanding the error structures of remotely sensed soil moisture observations is essential for correctly interpreting observed variations and trends in the data or assimilating them in hydrological or numerical weather prediction models. Nevertheless, a spatially coherent assessment of the quality of the various globally available datasets is often hampered by the limited availability over s...

متن کامل

Quality Assessment of the CCI ECV Soil Moisture Product Using ENVISAT ASAR Wide Swath Data over Spain, Ireland and Finland

During the last decade, great progress has been made by the scientific community in generating satellite-derived global surface soil moisture products, as a valuable source of information to be used in a variety of applications, such as hydrology, meteorology and climatic modeling. Through the European Space Agency Climate Change Initiative (ESA CCI), the most complete and consistent global soi...

متن کامل

Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron Probes

The scale difference between point in situ soil moisture measurements and low resolution satellite products limits the quality of any validation efforts in heterogeneous regions. Cosmic Ray Neutron Probes (CRNP) could be an option to fill the scale gap between both systems, as they provide area-average soil moisture within a 150–250 m radius footprint. In this study, we evaluate differences and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental Modelling and Software

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2012